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model for T > Tc and d = 4 
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WC2R 2LS, UK 
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Abstract. We investigate the spin-i king model with nearest-neighbour interactions on the 
four-dimensional simple hypercubic lattice. High-temperature series expansions are 
studied for the zero-field susceptibility ,yo and the fourth-field derivative of the free energy 
,yA2’ up to order U ”. The series are analysed for singularities of the form r-‘Iln tiP where I is 
the reduced temperature. For ,yo it is found that p = 0.33 i0.07 when q = 1, in good 
agreement with the prediction p = $, q = 1 of renormalisation group theory. The critical 
temperature is estimated to be U,’ =67315*0~0015.  Results for ,y;” are more slowly 
convergent but are not inconsistent with the renormalisation group prediction p = $, q = 4. 

1. Introduction and summary 

An early study of the spin-$ Ising model with nearest-neighbour interactions on lattices 
with more than three space-like dimensions is that of Fisher and Gaunt (1964). They 
obtained the high-temperature expansion for the zero-field susceptibility ,yo on a 
general simple hypercubic lattice of dimensionality d in the usual high-temperature 
variable v = tanh ( J / k T )  up to order v At that time it was generally believed that as 
T- ,  Tc+ 

,yo - t -Y  t = (T  - Tc)/  T,  (1.1) 

where the critical exponent y approaches its mean-field value of y = 1 smoothly as 
d + 03. Support for this conjecture was obtained by Fisher and Gaunt by analysing their 
series using the standard ratio and Pade approximant techniques, which have been 
reviewed by Gaunt and Guttmann (1974). However, according to the modern theory of 
the renormalisation group (for reviews of RG, see Fisher 1974, Ma 1976, BrCzin et a1 
1976, Wallace and Zia 1978) y is expected to decrease from y = 1: when d = 2, attain 
its mean-field value of y = 1 at the critical dimension ( d ,  = 4) and then remain at this 
value for all d > 4. Fisher and Gaunt, however, estimated that in four dimensions 

y = 1.094 * 0.0025 (d = 4). (1.2) 

Larkin and Khmel’nitskii (1969) showed by the use of field-theoretical techniques 
that the asymptotic form of the susceptibility for d = 4 should include a logarithmic 
correction term in addition to the f-? dependence. They predicted that, in contrast to 
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( l . l ) ,  xo should behave as 

,yo- t-’lln rip, (T-.  Tc+)  (1.3) 

with y = l  a n d p = $ .  
The first attempt to explain discrepancies like that between (1.2) and the mean-field 

value y = 1 in terms of a confluent logarithmic singularity was made by Moore (1970). 
He concluded that his series expansions for the spherical moments of the spin-spin 
correlation function were suggestive of logarithmic factors, but was unable to dis- 
tinguish between them and a real departure of the indices from their mean-field values. 
Assuming the asymptotic form (l.l),  he estimated y = 1.065 *0.003, a value slightly 
smaller than (1.2) of Fisher and Gaunt. 

Recently, Baker (1977) has derived a high-temperature expansion up to order u 9  for 
the fourth-field derivative of the free energy xb” on a simple hypercubic lattice of 
arbitrary dimensionality. Using this series together with the susceptibility expansion 
and a revised estimate of the exponent v for the correlation length 6 he obtained for 
d = 4  

(1.4) 2A - dv - y = -0.302 f 0.038 

where A is the gap exponent. This result is in direct conflict with RG theory which 
assumes implicitly that the hyperscaling relation 

(1.5) 

holds exactly in all dimensions. In four dimensions, RG theory predicts that algebraic 
singularities are modified by the presence of logarithmic correction terms. As we have 
seen, the susceptibility is given by (1.3) while the fourth-field derivative becomes 
(BrCzin er a1 1976) 

xi” - t-y-2Alln t l P  ( T +  Tc+)  (1.6) 

2 A - d ~  - y = 0 

3 with y = 1, A = 5 and p = f. Hence, 

(1.7) 

and should be free of logarithmic factors. By considering quantities such as xb2)/x0 and 
xot4, both of which are logarithm-free according to RG theory, Baker (1977) concluded 
that the singularity structure of the high-temperature series for xo, xb”, 5,. . . is more 
easily accounted for without the inclusion of logarithmic correction terms. 

Clearly the failure of hyperscaling and the absence of logarithmic corrections for the 
four-dimensional Ising model would have important consequences for RG theory. In 
view of this we have undertaken an extensive study of the d = 4 Ising model. The basic 
configurational problem is studied in an accompanying paper (Sykes 1979) and the data 
derived there determine the expansions of xo and xb2’ up to U 17, namely 

,yo= 1+8u+56u2+392u3+2696u4+18 536u5+126536u6 

+863 720u7+5 873 768u8+39 942 184u9+271 009 1 1 2 ~ ”  

+1838725 896u”+12457092504u’2+84392312392u’3 

+571 140732 808uI4+3 865 210 690 8 8 8 ~ ’ ~  

+26 138 072 412 04Oul6+ 176 752 645 540 264u17+. . . (1.8) 
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and 

xi” = 1+32v+584u2+8288v3+101 240u4+l 121 120u5 

+ 11 570 360u6+ 1 1 3  293 088v7+1 064 631 0 3 2 ~ ’  

+ 9  681 082 144v9+85 688 330 696u10+741 562 925 6 6 4 ~ ”  

+ 6  296 196 525 7680”+52 589 092 312 2 8 8 ~ ’ ~  

+433 044 168 426 616v14+3 521 747 918 221 984v” 

+ 28 326 976 016 327 0 3 2 ~ ’ ~  + 225 625 290 121 278 496u l7  + . . . . 
(1.9) 

The ,yo series are in agreement with Fisher and Gaunt (1964) up to U ” ,  while the xi” 
series agrees with Baker (1977) up to u9.  All the other coefficients are new. 

We have analysed these series for singularities of the form t-‘Iln tlP using a method 
devised by Guttmann (1978) for dealing with a similar singularity in the generating 
function for self-avoiding walks on a four-dimensional simple hypercubic lattice. For 
xo we estimate p = 0.33 5 0.07 when q = 1,  while for xi” p = f provides a reasonably 
good fit to the data when q = 4. Both of these results are consistent with the predictions 
of RG theory, namely q = 1, p = f for xo and 4 = 4, p = f for xf’. 

Of course, by choosing values of q close to but not equal to their mean-field values it 
is possible to obtain an equally good fit to the data for slightly different values of p .  
Similarly, if one ignores the confluent logarithmic terms altogether by setting p = 0, a 
reasonably good fit can be obtained for values of q differing by relatively large amounts 
from their mean-field values. This explains why Fisher and Gaunt’s original estimate 
(1.2) of y was rather larger than the mean-field value. Reanalysis of the ,yo series 
subject to this condition (namely p = 0) is undertaken in § 2 using the additional 
coefficients now available, mainly to provide an improved estimate of the critical point 
which we need for our subsequent analysis. We do not present our more general 
attempts to fit the series with fixed 4 not equal to its mean-field value. While such fits 
will presumably always be possible, the relative ease with which we have obtained 
estimates of p consistent with RG theory when q is fixed at its mean-field value may well 
be significant. 

2. Series analysis of ,yo 

As already stated, we need an approximate starting value of the critical point uc. Using 
the standard ratio method (Gaunt and Guttmann 1974) we have analysed the ,yo series 
on the assumption of a singularity of the form (1 .1)  and obtained an ‘unbiased’ estimate 
of 

l /v ,=  6-732 f 0.002. (2.1) 

This is somewhat larger than the previous estimates of 6.7220 f 0.0015 (Fisher and 
Gaunt 1964) and 6.725 (Moore 1970), which were based upon six fewer terms. 

A ‘biased’ sequence of estimates for the exponent y may be obtained from 
yn = 1 + n (ucpn - 1) where pn is the ratio of successive coefficients. Using the central 
value in (2.1) we find 1.0788, 1.0862, 1.0764, 1.0823, 1.0742, 1.0792, 1.0722 and 
1.0764 for n = 10 to 17. The uncertainty in (2.1) produces an uncertainty of 50.005 in 
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the values of y,. Clearly the estimate (1.2) of Fisher and Gaunt (1964) is too large. 
However, the above sequence exhibits quite a lot of curvature when plotted against l / n  
and is very difficult to extrapolate. Such behaviour would not be unexpected if (1.1) 
were modified by a confluent logarithmic correction term as in (1.3). Since a limiting 
value of y = 1 is by no means excluded, we now analyse the series for a singularity of the 
form (1.3) with y = 1, as predicted by RG theory. 

Our more sophisticated analysis follows Guttmann (1978). One begins by eliminat- 
ing the effect of the antiferromagnetic singularity by transforming to a new variable x 
defined by 

x =2v/ [ l+(u /uF)]  (2.2) 

where U,* is an estimate of the exact critical point vc .  We have used the central value in 
(2.1) for 0:. Writing the transformed series as 

we next calculate the ratios r, = a,/a,,-l. Defining the function f(x)  by 

x - p * f ( x ) = x - P * ( l  -x)-'*lln (1 -x) lp'  = b,x" 
n a0 

(2.3) 

with q* = 1, we calculate the ratios r: = b, , /b , - l .  The basic idea of the method is now to 
compare the behaviour of the ratios r: for the mimic function (2.3) for a range of the 
parameter p *  with the behaviour of r,. Our analysis is based upon the following two 
observations. Firstly, as n +CO the sequence R, = r , /r:  should approach x,' with zero 
slope when p* = p. To allow €or higher-order correction terms, linear and quadratic 
extrapolants are calculated. Secondly, and simultaneously, the exponent estimates 
n(R,,u: - 1) and their linear extrapolants must approach zero as n +a. 

We have computed the above quantities for a range of values of p*  (holding l /u :  
fixed) and our results for four different values are shown in table 1. For p *  = 0.25 the 
sequence {R,,} increases, reaches a maximum and then decreases towards l/v:. The 
linear and quadratic extrapolants are decreasing and increasing, respectively, towards 
l/u:. However, the exponent estimates are increasing and are already well above zero. 
For p *  = 0.30, {R,} is increasing and is already greater than l/u:. However, it appears 
that a maximum is just about to be attained since the linear and quadratic extrapolants 
are decreasing and increasing, respectively, towards l/u:. The exponent estimates, 
although increasing beyond zero, have linear extrapolants moving towards and closer to 
zero than they were in the previous case. Thus p*  = 0.30 is favoured over p* = 0.25. 
For p *  = 0.35 the {R,} sequence is approaching l / u :  from below and the quadratic 
extrapolants are closer to l / u :  than before. In addition, the exponent estimates are 
increasing towards zero from below but their linear extrapolants, although very close 
indeed to zero, are now moving away. This value of p*  seems equally acceptable as the 
previous one. For p *  = 0.40 the quadratic extrapolants are marginally closer to l /v :  
than they were for p*=O.35. However, the linear extrapolants of the exponent 
estimates are appreciably negative and moving even further away from zero. Thus, 
p *  = 0.40 is less favoured than p*  = 0.35. From this analysis alone we conclude that 
p = 0.30 to 0.35. Similar results are obtained using other values of l / u :  lying within 
the uncertainty range quoted in (2.1). Allowing for all the uncertainties, we widen our 
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Table 1. Analysis of transformed susceptibility series for the d = 4 Ising model assuming 1 / v f  =6,732. 

P* n R” Linear Quadratic Exponent Linear 
extrapolants extrapolants extrapolants 

9 
10 
11 
12 

0.25 13 
14 
15 
16 
17 

9 
10 
11 
12 

0.30 13 
14 
15 
16 
17 

9 
10 
11 
12 

0.35 13 
14 
15 
16 
17 

9 
10 
11 
12 

0.40 13 
14 
15 
16 
17 

6.7387 
6.7393 
6,7395 
6.7395 
6,7393 
6.7391 
6.7388 
6.7386 
6.7383 

6,7274 
6.7293 
6.7306 
6,7315 
6.7321 
6.7325 
6.7328 
6.7330 
6,7331 

6,7160 
6,7193 
6.7217 
6.7235 
6.7248 
6.7258 
6.7266 
6.7273 
6.7278 

6.7045 
6.7092 
6.7127 
6.7154 
6.7175 
6.7191 
6.7205 
6,7216 
6.7225 

6.7491 
6.7447 
6.7415 
6.7392 
6,7375 
6.7362 
6.7352 
6.7344 
6.7338 

6.7518 
6.7470 
6,7436 
6.741 1 
6.7392 
6,7377 
6,7366 
6.7357 
6.7350 

6.7544 
6.7494 
6.7457 
6.7429 
6.7408 
6.7392 
6.7380 
6.7370 
6.7362 

6,7571 
6.7517 
6.7478 
6.7448 
6.7425 
6.7408 
6,7394 
6,7383 
6.7374 

6.7270 
6.7271 
6.7273 
6.7276 
6.7280 
6.7284 
6,7287 
6.7290 
6,7293 

6.7282 
6.7281 
6.7282 
6.7284 
6.7286 
6.7289 
6.7292 
6,7295 
6.7297 

6.7295 
6.7291 
6.7291 
6.7292 
6.7293 
6.7295 
6.7298 
6.7300 
6.7302 

6.7308 
6.7302 
6.7300 
6.7300 
6.7300 
6,7302 
6.7303 
6.7305 
6.7306 

0.0090 
0.0109 
0.0123 
0.0133 
0.0142 
0.0148 
0.0153 
0,0156 
0.0159 

-0.0062 
-0.0039 
-0.0022 
-0.0009 

0.0002 
0~0010 
0.0017 
0.0023 
0,0027 

-0.0214 
-0.0189 
-0.0168 
-0.0152 
-0.0139 
-0.0128 
-0,0119 
-0.0112 
-0,0106 

-0.0368 
-0.0339 
-0.0315 
-0,0296 
-0,0281 
-0.0268 
-0.0257 
-0.0247 
-0,0239 

0.0293 
0.0278 
0.0264 
0.0251 
0.0239 
0.0228 
0.0219 
0.0210 
0.0202 

0.0173 
0.0162 
0.0150 
0,0139 
0,0129 
0,0120 
0,0112 
0.0105 
0,0098 

0,0052 
0.0044 
0,0035 
0.0027 
0.0019 
0.001 1 
0.0005 

-0~0001 
-0.0007 

-0.0070 
-0.0075 
-0.0081 
-0.0087 
-0.0093 
-0.0099 
-0.0104 
-0.0 108 
-0.0112 

confidence limits and write 

p = 0.33 f 0.07. (2.4) 
This result is in good agreement with the RG prediction of p = f. 

We now assume that the RG prediction (1.3) with y = 1 and p = f is the exact 
asymptotic behaviour and use this information to obtain an improved, ‘biased’ estimate 
of l / v c .  We use an analysis technique similar to that just described except that instead 
of varying p *  with l / v :  held fixed, we vary l / v :  with fixed p *  = f .  In this way we 
estimate 

l / v ,=6*7315*0 .0015  (2 .5 )  
which lies very close to our initial ‘unbiased’ estimate in (2.1). 
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3. Series analysis of xiz) 

In this section we study the expansion (1.9) of the fourth-field derivative of the free 
energy xb”, assuming a singularity of the form given in (1.6). 

We have seen in (1.7) that according to RG theory xb2)/xo should be free of 
logarithmic factors and diverge at the critical point like a pole of order three. We find 
that the Dlog-Pad6 approximants to the xb2)/x0 series do have an isolated pole on the 
real positive U axis, characteristic of a simple algebraic singularity not complicated by 
logarithmic factors. The location of this pole and its corresponding residue as obtained 
from the diagonal and main off-diagonal approximants are given in table 2. In contrast 
to Baker (1977), who found that the series up to u9  gave rise to an erratic Pad6 table, we 
find that with eight more series coefficients the last few table entries are very close 
indeed to the value of l / v C  given in (2.5) with a residue around 2-98. This value for the 
exponent differs by only f0/o from the RG prediction. 

Table 2. Dlog-Pade analysis of ,yb2’/,yo series for the d = 4 Ising model. 

2 6.7561 (-2.9188) 6 .7771 ( -2~8930)  6.7884 (-2.8743) 
3 6.8017 (-2.8407) 6 ,7781 (-2.8917)$ 6.7281 (-2.9895) 
4 6.7647 (-2,9114)8 6,7301 (-2.9843) 6 .7293 (-2.9867) 
5 6.7286 (-2.9889) 6 ,7294 (-2.9862) 6 .7293 (-2.9867): 
6 6.7241 (-2.9983)t  6 ,7307 (-2,9822) 6.7333 (-2.9695) 
7 6 .7318 (-2.9779) 6 ,7315 (-2.9790) 6.7314 (-2.9795) 
8 6.7313 (-2.9799) 6 ,7316 (-2.9785)t 

t Defect on  positive axis. 
$ Defect on negative axis. 
B Defect in complex plane. 

We have also studied xi2’ using Guttmann’s method of analysis. We assume 

- t-411n tiP (3.1) 
and try to determine the correction exponent p .  We now take q* = 4 in (2.3) and 
analyse for a range of values of p *  for fixed l / v :  equal to the central value in (2.5). (The 
uncertainties quoted in (2.5) do not affect our conclusions.) In contrast to the case of ,yo, 
the exponent estimates n (R,uc* - 1 )  possess considerable curvature when plotted 
against l /n ,  making it more difficult to estimate their limit. However, a small positive 
value of p *  is definitely preferred. Assumingp* = f, as predicted by RG theory, gives the 
sequence 

-0.531713(n = lo), -0.513470(n = l l ) ,  -0*495964(n = 12), 

-0*479284(n = 13), -0*463460(n = 14), -0*448484(n = 15), (3.2) 
-0*434330(n = 16), -0.420959(n = 17). 

Analysis of this sequence using Neville tables (Gaunt and Guttmann 1974) indicates a 
limit close to zero. Also, the sequence R, is found to be consistent with a horizontal 
approach to l / u T ,  though rather slowly. We conclude, therefore, that the coefficients of 
xb” can be fitted to a singularity of the form predicted by RG theory. 
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4. Conclusions 

We have investigated high-temperature series expansions up to U l 7  for the zero-field 
susceptibility xo and the fourth-field derivative of the free energy xi’’ for the d = 4 Ising 
model. The series have been analysed using a recent method due to Guttmann (1978) 
on the assumption that the physical singularity is of the form rCq1ln t iP .  For xo, we fixed 4 
at its mean-field value of q = 1 and then estimated p = 0.33 f 0.07, in good agreement 
with the prediction q = 1, p = 4 of RG theory. For xh”, convergence is rather slower and 
we were unable to make a definite estimate of p having fixed 4 at its mean-field value, 
q = 4. Instead we found that the series could be fitted quite well with a range of small 
positive values of p ,  including the RG value of p = 4. Using Pad6 approximant tech- 
niques we have also found evidence that ,yb2)/,yo is logarithm-free as predicted by RG 
theory, and made the estimate 2A-2.98 in close agreement with the RG value of 
2A= 3. 

In summary, we have not found any conflict between high-temperature series results 
and the predictions of RG theory for the d = 4 Ising model. In our opinion, any small 
discrepancies which remain could be accounted for in terms of the finite number of 
coefficients available, slow convergence of successive approximation schemes, additive 
corrections to the dominant singular form (Baker and Golner 1977), and so on. This 
conclusion is contrary to that drawn by Baker (1977), although it should be added that 
his work was done with much shorter series. 

In  subsequent work we will examine the analogous situation below and at the critical 
temperature. 
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